Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Pharm Biol ; 60(1): 862-878, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1860677

ABSTRACT

CONTEXT: Coronavirus disease 2019 is a global pandemic. Studies suggest that folic acid has antiviral effects. Molecular docking shown that folic acid can act on SARS-CoV-2 Nucleocapsid Phosphoprotein (SARS-CoV-2 N). OBJECTIVE: To identify novel molecular therapeutic targets for SARS-CoV-2. MATERIALS AND METHODS: Traditional Chinese medicine targets and virus-related genes were identified with network pharmacology and big data analysis. Folic acid was singled out by molecular docking, and its potential target SARS-CoV-2 N was identified. Inhibition of SARS-CoV-2 N of folic acid was verified at the cellular level. RESULTS: In total, 8355 drug targets were potentially involved in the inhibition of SARS-CoV-2. 113 hub genes were screened by further association analysis between targets and virus-related genes. The hub genes related compounds were analysed and folic acid was screened as a potential new drug. Moreover, molecular docking showed folic acid could target on SARS-CoV-2 N which inhibits host RNA interference (RNAi). Therefore, this study was based on RNAi to verify whether folic acid antagonises SARS-CoV-2 N. Cell-based experiments shown that RNAi decreased mCherry expression by 81.7% (p < 0.001). This effect was decreased by 8.0% in the presence of SARS-CoV-2 N, indicating that SARS-CoV-2 N inhibits RNAi. With increasing of folic acid concentration, mCherry expression decreased, indicating that folic acid antagonises the regulatory effect of SARS-CoV-2 N on host RNAi. DISCUSSION AND CONCLUSIONS: Folic acid may be an antagonist of SARS-CoV-2 N, but its effect on viruses unclear. In future, the mechanisms of action of folic acid against SARS-CoV-2 N should be studied.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Nucleocapsid Proteins , Folic Acid , SARS-CoV-2 , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Folic Acid/pharmacology , Humans , Molecular Docking Simulation , Phosphoproteins/antagonists & inhibitors
2.
Eur J Med Chem ; 227: 113966, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1487705

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unprecedented in human history. As a major structural protein, nucleocapsid protein (NPro) is critical to the replication of SARS-CoV-2. In this work, 17 NPro-targeting phenanthridine derivatives were rationally designed and synthesized, based on the crystal structure of NPro. Most of these compounds can interact with SARS-CoV-2 NPro tightly and inhibit the replication of SARS-CoV-2 in vitro. Compounds 12 and 16 exhibited the most potent anti-viral activities with 50% effective concentration values of 3.69 and 2.18 µM, respectively. Furthermore, site-directed mutagenesis of NPro and Surface Plasmon Resonance (SPR) assays revealed that 12 and 16 target N-terminal domain (NTD) of NPro by binding to Tyr109. This work found two potent anti-SARS-CoV-2 bioactive compounds and also indicated that SARS-CoV-2 NPro-NTD can be a target for new anti-virus agents.


Subject(s)
Antiviral Agents/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Phenanthridines/chemistry , SARS-CoV-2/metabolism , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/metabolism , Drug Design , Humans , Kinetics , Molecular Docking Simulation , Phenanthridines/metabolism , Phenanthridines/pharmacology , Phenanthridines/therapeutic use , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , Protein Binding , Protein Structure, Tertiary , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Vero Cells , COVID-19 Drug Treatment
3.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1470888

ABSTRACT

The ongoing COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a globally leading public health concern over the past two years. Despite the development and administration of multiple vaccines, the mutation of newer strains and challenges to universal immunity has shifted the focus to the lack of efficacious drugs for therapeutic intervention for the disease. As with SARS-CoV, MERS-CoV, and other non-respiratory viruses, flavonoids present themselves as a promising therapeutic intervention given their success in silico, in vitro, in vivo, and more recently, in clinical studies. This review focuses on data from in vitro studies analyzing the effects of flavonoids on various key SARS-CoV-2 targets and presents an analysis of the structure-activity relationships for the same. From 27 primary papers, over 69 flavonoids were investigated for their activities against various SARS-CoV-2 targets, ranging from the promising 3C-like protease (3CLpro) to the less explored nucleocapsid (N) protein; the most promising were quercetin and myricetin derivatives, baicalein, baicalin, EGCG, and tannic acid. We further review promising in silico studies featuring activities of flavonoids against SARS-CoV-2 and list ongoing clinical studies involving the therapeutic potential of flavonoid-rich extracts in combination with synthetic drugs or other polyphenols and suggest prospects for the future of flavonoids against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Flavonoids/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , Rhinovirus/drug effects , Rhinovirus/physiology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Virus Internalization/drug effects
4.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1288960

ABSTRACT

(1) Background: The COVID-19 pandemic lacks treatments; for this reason, the search for potential compounds against therapeutic targets is still necessary. Bioinformatics tools have allowed the rapid in silico screening of possible new metabolite candidates from natural resources or repurposing known ones. Thus, in this work, we aimed to select phytochemical candidates from Peruvian plants with antiviral potential against three therapeutical targets of SARS-CoV-2. (2) Methods: We applied in silico technics, such as virtual screening, molecular docking, molecular dynamics simulation, and MM/GBSA estimation. (3) Results: Rutin, a compound present in Peruvian native plants, showed affinity against three targets of SARS-CoV-2. The molecular dynamics simulation demonstrated the high stability of receptor-ligand systems during the time of the simulation. Our results showed that the Mpro-Rutin system exhibited higher binding free energy than PLpro-Rutin and N-Rutin systems through MM/GBSA analysis. (4) Conclusions: Our study provides insight on natural metabolites from Peruvian plants with therapeutical potential. We found Rutin as a potential candidate with multiple pharmacological properties against SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants/chemistry , Plants/metabolism , Asteraceae/chemistry , Asteraceae/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Databases, Factual , Humans , Lepidium/chemistry , Lepidium/metabolism , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Peru , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , Rutin/chemistry , Rutin/pharmacology , SARS-CoV-2
5.
Protein J ; 39(6): 600-618, 2020 12.
Article in English | MEDLINE | ID: covidwho-1188139

ABSTRACT

Many research teams all over the world focus their research on the SARS-CoV-2, the new coronavirus that causes the so-called COVID-19 disease. Most of the studies identify the main protease or 3C-like protease (Mpro/3CLpro) as a valid target for large-spectrum inhibitors. Also, the interaction of the human receptor angiotensin-converting enzyme 2 (ACE2) with the viral surface glycoprotein (S) is studied in depth. Structural studies tried to identify the residues responsible for enhancement/weaken virus-ACE2 interactions or the cross-reactivity of the neutralizing antibodies. Although the understanding of the immune system and the hyper-inflammatory process in COVID-19 are crucial for managing the immediate and the long-term consequences of the disease, not many X-ray/NMR/cryo-EM crystals are available. In addition to 3CLpro, the crystal structures of other nonstructural proteins offer valuable information for elucidating some aspects of the SARS-CoV-2 infection. Thus, the structural analysis of the SARS-CoV-2 is currently mainly focused on three directions-finding Mpro/3CLpro inhibitors, the virus-host cell invasion, and the virus-neutralizing antibody interaction.


Subject(s)
COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Papain-Like Proteases/chemistry , Coronavirus RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/chemistry , Amino Acid Sequence , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Cryoelectron Microscopy , Crystallography, X-Ray , Drug Discovery , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , Protein Conformation , Protein Kinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
6.
Front Immunol ; 12: 663586, 2021.
Article in English | MEDLINE | ID: covidwho-1190318

ABSTRACT

As of January 2021, SARS-CoV-2 has killed over 2 million individuals across the world. As such, there is an urgent need for vaccines and therapeutics to reduce the burden of COVID-19. Several vaccines, including mRNA, vector-based vaccines, and inactivated vaccines, have been approved for emergency use in various countries. However, the slow roll-out of vaccines and insufficient global supply remains a challenge to turn the tide of the pandemic. Moreover, vaccines are important tools for preventing the disease but therapeutic tools to treat patients are also needed. As such, since the beginning of the pandemic, repurposed FDA-approved drugs have been sought as potential therapeutic options for COVID-19 due to their known safety profiles and potential anti-viral effects. One of these drugs is ivermectin (IVM), an antiparasitic drug created in the 1970s. IVM later exerted antiviral activity against various viruses including SARS-CoV-2. In this review, we delineate the story of how this antiparasitic drug was eventually identified as a potential treatment option for COVID-19. We review SARS-CoV-2 lifecycle, the role of the nucleocapsid protein, the turning points in past research that provided initial 'hints' for IVM's antiviral activity and its molecular mechanism of action- and finally, we culminate with the current clinical findings.


Subject(s)
Active Transport, Cell Nucleus/drug effects , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Ivermectin/therapeutic use , SARS-CoV-2/drug effects , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/metabolism , Drug Repositioning , Humans , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , Protein Transport/drug effects , SARS-CoV-2/growth & development , Vero Cells , Virus Replication/drug effects , alpha Karyopherins/antagonists & inhibitors , beta Karyopherins/antagonists & inhibitors
7.
J Biomol Struct Dyn ; 40(10): 4488-4495, 2022 07.
Article in English | MEDLINE | ID: covidwho-990281

ABSTRACT

The outbreak of COVID-19, the disease caused by SARS-CoV-2, continues to affect millions of people around the world. The absence of a globally distributed effective treatment makes the exploration of new mechanisms of action a key step to address this situation. Stabilization of non-native Protein-Protein Interactions (PPIs) of the nucleocapsid protein of MERS-CoV has been reported as a valid strategy to inhibit viral replication. In this study, the applicability of this unexplored mechanism of action against SARS-CoV-2 is analyzed. During our research, we were able to find three inducible interfaces of SARS-CoV-2 N protein NTD, compare them to the previously reported MERS-CoV stabilized dimers, and identify those residues that are responsible for their formation. A drug discovery protocol implemented consisting of docking, molecular dynamics and MM-GBSA enabled us to find several compounds that might be able to exploit this mechanism of action. In addition, a common catechin skeleton was found among many of these molecules, which might be useful for further drug design. We consider that our findings could motivate future research in the fields of drug discovery and design towards the exploitation of this previously unexplored mechanism of action against COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Nucleocapsid Proteins , Drug Discovery , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleocapsid Proteins , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , Protease Inhibitors , Protein Interaction Mapping , SARS-CoV-2/drug effects , Virus Replication
8.
J Biomol Struct Dyn ; 40(9): 3928-3948, 2022 06.
Article in English | MEDLINE | ID: covidwho-963313

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel etiological agent of coronavirus disease 2019 (COVID-19). Nigella sativa, commonly known as black seed or black cumin, has been a historical and traditional plant since thousands of years. Based on their therapeutic efficacy, the chief components of terpenoids and flavonoids were selected from N. sativa seeds and seed oil. This study was designed to check the antiviral efficacy of N. sativa main phytoconstituents against five potential targets of SARS-CoV-2 using in silico structure-based virtual screening approach. Out of twenty five phytocomponents, ten components showed best binding affinity against two viral proteins viz. N-terminal RNA binding domain (NRBD; PDB ID: 6M3M) of nucleocapsid protein and papain-like protease (PL-PRO; PDB ID: 6W9C) of SARS-CoV-2 using AutoDock 4.2.6, AutoDock Vina and iGEMDOCK. PASS analyses of all ten phytocomponents using Lipinski's Rule of five showed promising results. Further, druglikeness and toxicity assessment using OSIRIS Data Warrior v5.2.1 software exhibited the feasibility of phytocomponents as drug candidates with no predicted toxicity. Molecular dynamics simulation study of NRBD of SARS-CoV-2 nucleocapsid protein-alpha-spinasterol complex and PL-PRO-cycloeucalenol complex displayed strong stability at 300 K. Both these complexes exhibited constant root mean square deviation (RMSDs) of protein side chains and Cα atoms throughout the simulation run time. Interestingly, PL-PRO and NRBD are key proteins in viral replication, host cell immune evasion and viral assembly. Thus, NRBD and PL-PRO have the potential to serve as therapeutic targets for N. sativa phytoconstituents in drug discovery process against COVID-19.


Subject(s)
Antiviral Agents , Coronavirus Nucleocapsid Proteins , Coronavirus Papain-Like Proteases , Nigella sativa , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Nigella sativa/chemistry , Phosphoproteins/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
9.
J Biomol Struct Dyn ; 40(9): 4084-4099, 2022 06.
Article in English | MEDLINE | ID: covidwho-949567

ABSTRACT

The Coronavirus Disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 is an exceptionally contagious disease that leads to global epidemics with elevated mortality and morbidity. There are currently no efficacious drugs targeting coronavirus disease 2019, therefore, it is an urgent requirement for the development of drugs to control this emerging disease. Owing to the importance of nucleocapsid protein, the present study focuses on targeting the N-terminal domain of nucleocapsid protein from severe acute respiratory syndrome coronavirus 2 to identify the potential compounds by computational approaches such as pharmacophore modeling, virtual screening, docking and molecular dynamics. We found three molecules (ZINC000257324845, ZINC000005169973 and ZINC000009913056), which adopted a similar conformation as guanosine monophosphate (GMP) within the N-terminal domain active site and exhibiting high binding affinity (>-8.0 kcalmol-1). All the identified compounds were stabilized by hydrogen bonding with Arg107, Tyr111 and Arg149 of N-terminal domain. Additionally, the aromatic ring of lead molecules formed π interactions with Tyr109 of N-terminal domain. Molecular dynamics and Molecular mechanic/Poisson-Boltzmann surface area results revealed that N-terminal domain - ligand(s) complexes are less dynamic and more stable than N-terminal domain - GMP complex. As the identified compounds share the same corresponding pharmacophore properties, therefore, the present results may serve as a potential lead for the development of inhibitors against severe acute respiratory syndrome coronavirus 2. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphoproteins/antagonists & inhibitors , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
10.
Nat Commun ; 11(1): 6041, 2020 11 27.
Article in English | MEDLINE | ID: covidwho-947535

ABSTRACT

The etiologic agent of the Covid-19 pandemic is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral membrane of SARS-CoV-2 surrounds a helical nucleocapsid in which the viral genome is encapsulated by the nucleocapsid protein. The nucleocapsid protein of SARS-CoV-2 is produced at high levels within infected cells, enhances the efficiency of viral RNA transcription, and is essential for viral replication. Here, we show that RNA induces cooperative liquid-liquid phase separation of the SARS-CoV-2 nucleocapsid protein. In agreement with its ability to phase separate in vitro, we show that the protein associates in cells with stress granules, cytoplasmic RNA/protein granules that form through liquid-liquid phase separation and are modulated by viruses to maximize replication efficiency. Liquid-liquid phase separation generates high-density protein/RNA condensates that recruit the RNA-dependent RNA polymerase complex of SARS-CoV-2 providing a mechanism for efficient transcription of viral RNA. Inhibition of RNA-induced phase separation of the nucleocapsid protein by small molecules or biologics thus can interfere with a key step in the SARS-CoV-2 replication cycle.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , SARS-CoV-2/physiology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/epidemiology , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/metabolism , HeLa Cells , Humans , Insecta , Intravital Microscopy , Microscopy, Fluorescence , Molecular Dynamics Simulation , Pandemics/prevention & control , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Transcription/drug effects , Viral Transcription/physiology , Virus Replication/drug effects , Virus Replication/genetics , COVID-19 Drug Treatment
11.
Life Sci ; 282: 118754, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-919594

ABSTRACT

Betacoronaviruses are in one genera of coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), etc. These viruses threaten public health and cause dramatic economic losses. The nucleocapsid (N) protein is a structural protein of betacoronaviruses with multiple functions such as forming viral capsids with viral RNA, interacting with viral membrane protein to form the virus core with RNA, binding to several cellular kinases for signal transductions, etc. In this review, we highlighted the potential of the N protein as a suitable antiviral target from different perspectives, including structure, functions, and antiviral strategies for combatting betacoronaviruses.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Nucleocapsid Proteins/metabolism , Drug Discovery , Animals , Betacoronavirus/physiology , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/chemistry , Host-Pathogen Interactions/drug effects , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Models, Molecular , Molecular Targeted Therapy , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Interaction Maps/drug effects , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
12.
Mol Cell ; 80(1): 164-174.e4, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-709380

ABSTRACT

SARS-CoV-2 infections are rapidly spreading around the globe. The rapid development of therapies is of major importance. However, our lack of understanding of the molecular processes and host cell signaling events underlying SARS-CoV-2 infection hinders therapy development. We use a SARS-CoV-2 infection system in permissible human cells to study signaling changes by phosphoproteomics. We identify viral protein phosphorylation and define phosphorylation-driven host cell signaling changes upon infection. Growth factor receptor (GFR) signaling and downstream pathways are activated. Drug-protein network analyses revealed GFR signaling as key pathways targetable by approved drugs. The inhibition of GFR downstream signaling by five compounds prevents SARS-CoV-2 replication in cells, assessed by cytopathic effect, viral dsRNA production, and viral RNA release into the supernatant. This study describes host cell signaling events upon SARS-CoV-2 infection and reveals GFR signaling as a central pathway essential for SARS-CoV-2 replication. It provides novel strategies for COVID-19 treatment.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Mitogen-Activated Protein Kinases/genetics , Phosphatidylinositol 3-Kinase/genetics , Receptors, Growth Factor/genetics , Viral Proteins/genetics , Adrenal Cortex Hormones/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antibodies, Neutralizing/therapeutic use , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Caco-2 Cells , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Receptors, Growth Factor/antagonists & inhibitors , Receptors, Growth Factor/metabolism , SARS-CoV-2 , Signal Transduction , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL